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Section 5: Recovering Risk Types and (Risk) Preferences

Jon Cohen
October 15, 2021
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EFS Motivation

• Simple motivation: learn about preferences and types from choices and events

• Policy motivation: how bad is adverse selection and what should we do about it?
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Big Picture Structure

1. Infer (distribution of) risk types from risk realizations

2. Infer (distribution of) risk preferences with the above + (distribution of) choices

3. Run counterfactuals using (joint distribution of) risk types + preferences
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Big Picture Idea of Today’s Recitation

• Review Cohen and Einav (2007) ECMA on car insurance choice

• Gain comfort with the idea of a model delivering

choicei = f(risk typei, risk preferencei)

• Gain comfort with behavioral and functional form assumptions to recover model
parameters from (imperfect) data

• Point out tips for digesting structural papers as “structural signposts”
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Picture of Big Picture Intuition

Notation: consumer i, choice j, prices pj , indirect utilities µij , choice regions Aij

Source: Berry and Haile (2021) WP

http://www.econ.yale.edu/~pah29/Foundations.pdf
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Outline

Institutional Details

Model

Identification of Risk Preferences
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Setting: Car Insurance

• Unobserved heterogeneity: risk type and risk aversion

• Realized risks: accidents

• Observed choices: trading off premium (always pay) vs. deductible (pay only after
accident) in menu of contracts
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Unlike EFS, Cohen and Einav Have Price Variation!

dit = min{.5pit, capt}

Firm says this was experimentation. Can avoid some assumptions w/ random variation...
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Unlike EFS, Cohen and Einav Have Dynamics

• Annuity guarantee: Permanent decision at time of annuity purchase

• Car insurance: Temporary coverage as long as you continue paying premiums

⇒ Consider “instantaneous” contract to isolate “static” demand
1. Tractable: get simple closed form expressions for choicei = f(risk typei, risk preferencei)
2. Connected to research question interested in risk preferences (not time preferences)
3. Realistic: observe many cancellations in data
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Model Overview

• Fully specify preferences to get choicei = f(risk typei, risk preferencei)
Identification problem: Choices driven by two unobserved dimensions
Identification solution: Make an assumption so one dimension is identified by something
other than choice
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Models Steps

1. Infer the distribution of risk types using observed risk realizations
What is the key assumption?

2. Given that, infer distribution of risk preferences from observed contract choices
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Potential Problems

1. Moral hazard

2. Non-random attrition due to early cancellation

3. Unreported accidents

4. Two dimensions of unobserved risk: frequency and size
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“Solutions"

(More or less) assume away!

1. Moral hazard
→ assume away!

2. Non-random attrition due to early cancellation
→ assume constant arrival rate and focus on per unit of time

3. Unreported accidents
→ assume threshold above which everything is reported

4. Two dimensions of unobserved risk: frequency and size
→ size is entirely idiosyncratic
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Inferring Risk Type: Connection to EFS

• Main idea: infer riskiness of observable groups based on their risk realizations

• Main assumption: no moral hazard

• Additional implementation challenges: data censoring
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Inferring Risk Type: Hypothetical with Perfect Data

• What type of data would we need to infer a given person’s risk type under a given
contract?

In our sample, the number of accidents is a noisy measure of accident probability
Fundamental tension between needing a very long time series and allowing age effects
Impossible in EFS because we observe you dying only once

• What type of data would we need to infer whether a given person’s risk type changes
under different contracts?

Need to additionally see people under multiple contracts
Ideally contracts would be randomly assigned



16/43

Inferring Risk Type: Hypothetical with Perfect Data

• What type of data would we need to infer a given person’s risk type under a given
contract?

In our sample, the number of accidents is a noisy measure of accident probability
Fundamental tension between needing a very long time series and allowing age effects
Impossible in EFS because we observe you dying only once

• What type of data would we need to infer whether a given person’s risk type changes
under different contracts?

Need to additionally see people under multiple contracts
Ideally contracts would be randomly assigned



16/43

Inferring Risk Type: Hypothetical with Perfect Data

• What type of data would we need to infer a given person’s risk type under a given
contract?

In our sample, the number of accidents is a noisy measure of accident probability
Fundamental tension between needing a very long time series and allowing age effects
Impossible in EFS because we observe you dying only once

• What type of data would we need to infer whether a given person’s risk type changes
under different contracts?

Need to additionally see people under multiple contracts
Ideally contracts would be randomly assigned



16/43

Inferring Risk Type: Hypothetical with Perfect Data

• What type of data would we need to infer a given person’s risk type under a given
contract?

In our sample, the number of accidents is a noisy measure of accident probability
Fundamental tension between needing a very long time series and allowing age effects
Impossible in EFS because we observe you dying only once

• What type of data would we need to infer whether a given person’s risk type changes
under different contracts?

Need to additionally see people under multiple contracts
Ideally contracts would be randomly assigned



17/43

Inferring Risk Types: Structure with Actual Data

1. Model accidents as Poisson process w/ parameter λ

λi captures i’s “risk type”
Structural signpost # 1: Familiarize yourself with “go-to” distributions for contexts

2. Parametrize based on observables: ln(λi) = x′
iβ + εi, where εi ∼ N(0, σ2

λ)

We don’t get to observe λi, but we get its distribution from many people who look like i

Structural signpost # 2: N() is computationally convenient and often a decent descriptor of
the population characteristics
Structural signpost # 3: log() accommodates parameters with sign restrictions
Structural signpost # 4: Incorporate heterogeneity based on observables
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Inferring Risk Type: Data

• Eyeball the positive correlation test

• Structural signpost # 5: Look for summary stats that drive the model (n.b. see Andrews,
Gentzkow, Shapiro (2020) ECMA for a formal treatment)

http://web.stanford.edu/~gentzkow/research/divergence.pdf
http://web.stanford.edu/~gentzkow/research/divergence.pdf
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Inferring Risk Type: Recap

• Assume no moral hazard so that realizations reveal type

• Observe only one realization → parametrize type based on observables

• Parameters: β, σλ
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Inferring Risk Preferences: Connection to EFS

• Main idea: write down a model choicei = f(risk typei, risk preferencei)

• Main assumptions: choices are driven by inferred risk information and reveal underlying
preferences

• Additional implementation challenges: discrete choices yield set identification rather
than point identification
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Inferring Risk Preferences: Cohen and Einav Overview

• Suppose we knew λi and choices are continuous
⇒ can invert choicei = f(risk typei, risk preferencei) to get exact risk preferences

• Discrete choices
⇒ get bounds on risk preferences

• Observe λi’s distribution rather than exact value
⇒ get distribution of risk preferences
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Inferring Risk Preferences: Mechanics

• Consider utility for coverage length t and ake lim t → 0 for “instantaneous contract"

• Derive indiff. condition btw contracts in terms of risk type/aversion
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Inferring Risk Preferences: “Instantaneous Contract"

• Poisson:
P (k accidents over time t) = (λt)k exp(−λt)

k!

k > 1 terms vanish as t → 0

• EU from contract price p and deductible d over small interval t:

v(p, d) ≈ (1 − λt)︸ ︷︷ ︸
P (no accident)

u(w − pt) + (λt)︸︷︷︸
P (1 accident)

u(w − pt − d)



24/43

Inferring Risk Preferences: Indifference Condition

• Consider a high vs. low-deductible contract
Notation check on deductibles: dL < dH ⇒ pL > pH

• Indifference condition on contracts for the marginal type:

v(pL, dL) = v(pH , dH)

• Solve λ and take t → 0 (see next slide for details):

λ = (pL − pH)u′(w)
u(w − dL) − u(w − dH)

• Rearrange to see MB vs. MC of low-deductible plan
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Math Asides on Solving for λ

• Substitute for v()’s and divide through by t

• pH , pL disappear in terms with t only in u(·) since limt→0 pHt = limt→0 pLt = 0
• Need to express terms with t as derivative:

1
t

[
u(w − pHt) − u(w − pLt)

]
=1

t

[(
u(w − pHt) − u(w)

)
−

(
u(w − pLt) − u(w)

)]
=pH u(w − pHt) − u(w)

pHt
− pL u(w − pLt) − u(w)

pLt

=(pL − pH)u′(w)
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Inferring Risk Preferences: Taking Stock

• Previously backed out (the distribution of) risk type λ

• Derived locus of risk type/aversion indifferent btw contracts:

λ = (pL − pH)u′(w)
u(w − dL) − u(w − dH)

• What can we do with an expression containing u(·), u′(·), and w?
Recall Baily-Chetty formula that mapped unobservable u′(c) gap into observables
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Inferring Risk Preferences: From hopeless u(·) to hopeful r

• Take 2nd order Taylor expansion of u around w in previous expression
u(w − dL) ≈ u(w) − u′(w)dL + 1

2 u′′(w)[dL]2

When is this exact?
Structural signpost # 6: Don’t miss forest through trees. Goal is connecting model to data.

• Recall coefficient of absolute risk aversion r(w) = −u′′(w)
u′(w)

EFS assumed CRRA because choice was over fraction of wealth
Cohen and Einav assume CARA because choice is over dollar amount

• Do algebra in the privacy of your own home:

r∗(λ) =
pL−pH

λ(dH−dL) − 1
1
2(dH − dL)

Recap: What is this telling us?
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Overview of Identification Section

• We made an behavioral assumption (no MH) and functional form assumption (Poisson
parameters distributed lognormal) to identify risk types

• We derived a model to get choicei = f(risk typei, risk preferencei)

• I’ll have a brief digression about model identification

• Then we will discuss assumptions that identify risk preferences
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Big Picture of Model Identification

What does model identification mean?

• A model is (set) identified if different (sets of) values of the parameters imply different
distributions of observable data (Matzkin 2013 ARE)

• Identification is a binary property of a(n economic or econometric) model

https://pdfs.semanticscholar.org/5bd9/8e2dd8a0745b04e89a44b146f0345370092b.pdf
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Recap on Model Identification: Examples

1. Econometric model: Additively linear in age, calendar time, and cohort
Age = calendar time - cohort
Different individual parameters consistent with same distribution of observable data
⇒ not identified (Ameriks and Zeldes 2004)

2. Economic model: Equilibrium relationship between supply and demand
Supply (demand) shifters identify the demand (supply) curve

https://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/16/Ameriks_Zeldes_age_Sept_2004d.pdf
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Identifying Risk Preferences: Illustration

Indifference condition from before: r∗(λ) = 2
[

1
λ

∆p
(∆d)2 − 1

∆d

]

1. What does variation in ∆p, ∆d, and ∆p/∆d do? (www.desmos.com/calculator)

2. What variation and outcomes do we observe in the data?

https://www.desmos.com/calculator
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Nonparametric Identification of r

• Given λ, choice identifies a set of possible r

• Random variation in prices and menus delivers many such sets

• Sufficient variation identifies r without additional functional form assumptions
Intuition: Find out a number by repeatedly asking if it’s > x for many different x
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Need for Parametric Assumptions

1. Cohen and Einav: Don’t actually observe infinite price variation

2. EFS: Don’t observe any price variation, so can get only identified sets without further
assumptions

3. Structural signpost # 7: Keep track of what assumptions are required by setting vs. want
of point identification/lack of infinite data vs. lack of random variation
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Parametric Identification: Setup

• Recall parametric assumption on risk type:

ln λi = x′
iβ + εi

where ε ∼ N(0, σλ)

• Additionally make parametric assumption on risk aversion:

ln ri = x′
iγ + vi

where vi ∼ N(0, σr)

• Note: We actually care about µλ ≡ Ei[λi] and µr ≡ Ei[ri] rather than β and γ

• Allow Cov(εi, vi) = ρσλσr since motivation is joint distribution of unobservables
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Parametric Identification: Intuition

• Model parameters: risk types µλ, σλ; risk preferences µr, σr ; and correlation ρ

• Rough intuition: Need 5 relevant moments to identify 5 parameters
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Parametric Identification: Intuition

• Fractions with k claim together identify µλ, σλ

• Fractions choosing low deductible among those with 0,1, and 2 claims identify the
remaining preference and correlation parameters

• Define ϕk ≡ fraction who chose the low deductible plan among those who realized k

claims for k ∈ {0, 1, 2}
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Parametric Identification: Graphical Intuition

Bar width = % w/ that # of accidents
Bar height = % buying H given # ofaccidents

Sequential thought experiments:

0. We have µλ, σλ

1. Suppose r constant (i.e.
σr = ρ = 0) → bar height

2. Now suppose σr > 0 but ρ = 0
→ bar slope

3. Now suppose σr, ρ > 0 → bar
convexity
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Parametric Identification: Estimation

• Collect parameters: Θ = {β, σλ, γ, σr, ρ}

• Write down likelihood of observed choices given a candidate Θ:

L(claimsi, choicei|Θ) = Pr(claimsi, choicei|λi, ri)Pr(λi, ri|Θ)

• Maximize likelihood?
Turns out this is computationally hard
(Evaluating likelihood once requires integrating over both λi and ri for every i)
Gibbs Markov Chain Monte Carlo to the rescue!
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Gibbs Sampling General Intuition

Both methods involve the data disciplining parameter estimation

Simulation methods: For when you/your computer is too dumb to evaluate something
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Gibbs Sampling Explanation

• MLE ≈ frequentist, Gibbs MCMC ≈ Bayesian
• Gibbs procedure:

1. Take draws of all parameters from priors
2. Draw a single parameter from a posterior (given observables and other drawn parameters)
3. Do previous step with a different parameter
4. Continue iterating over all parameters many times

Crazy result: The sequence of posterior draws converges to the joint distribution1

Upshot: After a bunch of iterations, averaging over many subsequent draws delivers
(mean) parameter estimate
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Gibbs Sampling Application-Specific Intuition

• Given (parameters governing distribution of) ri, observed choices tell you which
(parameters governing distribution of) λi are likely

• Given those (parameters governing distribution of) λi, (parameters governing
distribution of) ri are likely

• Applying the discipline of observed choices many times eventually delivers parameters
“close to the truth"
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Conclusion

• Separately identify multidimensional unobserved types: risk type and preference
“Looking under the hood" of the positive correlation test
Common themes in “structural" insurance papers:

1. Use ex post realizations to infer ex ante risk
2. Make assumption on contract choice process

• Requires assumptions to see what objects in data can be mapped to unobservables
• Also requires a lot of structure. In my view, the paper transparently:

1. Argues why assumptions and structure are necessary
2. Shows where identification comes from
3. Focuses on an interesting question without getting distracted
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