Section 6: Power Calculations

Jon Cohen

October 29, 2021

Outline

Power Calculations

Parametric Power Calculations

Simulation Power Calculations

Potpourri of Power Calculation Issues

Concluding Thoughts

Power Calculation Overview

- 1. How big of a sample size do you "need"?
- 2. Conditional on sample size, how "should" you allocate across arms?

Power Calculation Overview

- 1. How big of a sample size do you "need"?
- 2. Conditional on sample size, how "should" you allocate across arms?

General intuition: Make **ex ante** assumptions about how your experiment **will** look to understand properties of eventual analysis

Components of a Power Calculation

Specify data generating process

- \blacksquare Randomly assign n observations into treatment and control group
- Variance of outcomes σ^2

Components of a Power Calculation

- Specify data generating process
 - \blacksquare Randomly assign n observations into treatment and control group
 - Variance of outcomes σ^2
- Specify estimand of interest
 - $\blacksquare \text{ ATE: } E[Y|D=1]-E[Y|D=0]$

Components of a Power Calculation

Specify data generating process

- \blacksquare Randomly assign n observations into treatment and control group
- Variance of outcomes σ^2

Specify estimand of interest

$$\blacksquare \text{ ATE: } E[Y|D=1]-E[Y|D=0]$$

Specify estimator and its properties

- lacksquare Difference in means $\mu_1-\mu_0$ with sample sizes N_1,N_2
- False positives (size/Type I error) α fraction of the time and false negatives (power/Type II error) 1β fraction of the time
- lacksquare Minimum detectable effect size δ

You should walk away from this recitation knowing...

- 1. How to analytically solve for a simple power calc
- 2. The idea behind simulating an arbitrarily complex power calc
- 3. Why you shouldn't commit the cardinal sin of calculating "post hoc power"

Useful References

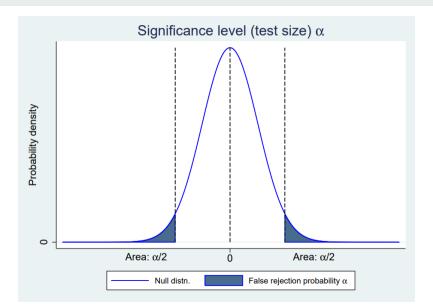
- List, Sadoff, and Wagner (2011) Exp. Econ.
 - "So You Want To Run An Experiment, Now What? Some Simple Rules of Thumb For Optimal Experimental Design"
- Duflo, Glennerster, and Kremer (2007) Handbook chapter
 - "Using Randomization in Development Economics Research: A Toolkit"

Outline

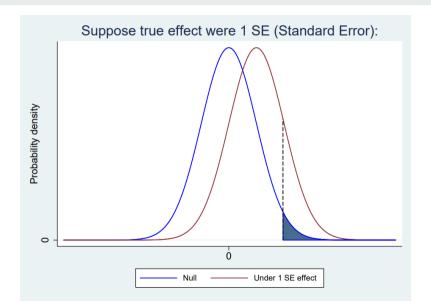
Power Calculations

Parametric Power Calculations

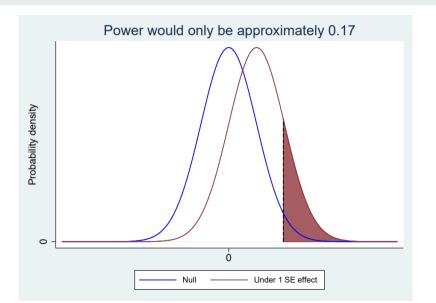
Simulation Power Calculations

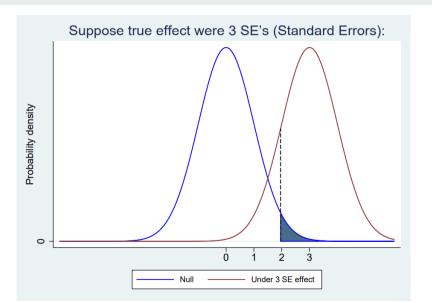

Potpourri of Power Calculation Issues

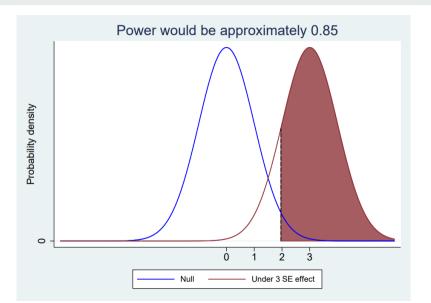
Concluding Thoughts

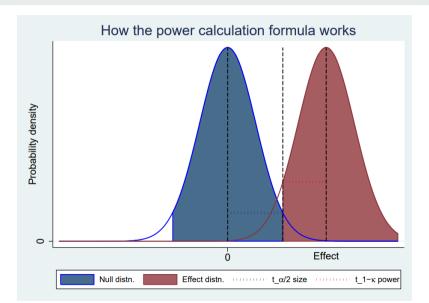

Parametric Power Calc Verbal Intuition

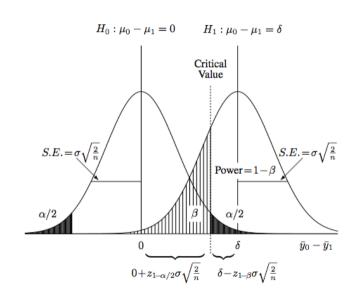
- 1. Draw outcome distributions under the null and a specific alternative hypothesis
- 2. Assume σ and n to get distribution of the (random variable) estimator
- 3. Calculate rejection regions of relevant curves


Visual Intuition: Rejection Threshold and Region if Null is True


Visual Intuition: Rejection Threshold if Small Alternative is True


Visual Intuition: Rejection Region if Small Alternative is True


Visual Intuition: Rejection Threshold if Large Alternative is True


Visual Intuition: Rejection Region if Large Alternative is True

Visual Intuition: MDE Controls Size and Power Appropriately

(Same visual intuition with more notation)

Parametric Power Calculation Math for MDE δ

- 1. $\hat{\delta}\sim N(\delta,\sigma_{\hat{\delta}})$ by CLT, getting $\sigma_{\hat{\delta}}$ with reasonable assumptions on outcome variance
- 2. For confidence level α , true parameter δ , and power 1β :

$$P(\frac{\hat{\delta}}{\sigma_{\hat{\delta}}} > t_{\alpha/2} | \delta) = 1 - \beta \quad \text{(probability of correctly rejecting null)}$$

$$P(\frac{\hat{\delta} - \delta}{\sigma_{\hat{\delta}}} > t_{\alpha/2} - \frac{\delta}{\sigma_{\hat{\delta}}} | \delta) = 1 - \beta \quad \text{(recenter by subtraction)}$$

$$\Phi(\frac{\delta}{\sigma_{\hat{\delta}}} - t_{\alpha/2}) = 1 - \beta \quad \text{(by normality of δ and symmetry of $\Phi(\cdot)$)}$$

$$\frac{\delta}{\sigma_{\hat{\delta}}} - t_{\alpha/2} = t_{1-\beta} \quad \text{(since t_k \equiv threshold under which $k\%$ of $\Phi(\cdot)$ lies)}$$

$$\delta_{MDE} = (t_{1-eta} + t_{lpha/2})\sigma_{\hat{\delta}}$$
 Calculated by Stata command sampsi

Sanity Check with OLS, Two Groups, and No Covariates

•
$$Y_i = \alpha + \delta D_i + \epsilon_i$$

- $D_i \in \{0,1\}$ with $P(D_i = 1) = p$
- ϵ_i i.i.d. with $Var(\epsilon) = \sigma^2$

What is the formula for $\sigma_{\hat{\delta}}$ given the above setup?

Sanity Check with OLS, Two Groups, and No Covariates

•
$$Y_i = \alpha + \delta D_i + \epsilon_i$$

- $D_i \in \{0,1\}$ with $P(D_i = 1) = p$
- ϵ_i i.i.d. with $Var(\epsilon) = \sigma^2$

What is the formula for $\sigma_{\hat{\delta}}$ given the above setup?

$$\sigma_{\hat{\delta}} = \sqrt{\frac{1}{p(1-p)} \frac{\sigma^2}{N}}$$

More General Setup

•
$$Y_{iD} = \alpha_i + X_i \beta + (\bar{\delta} + \delta_i) D_i + \epsilon_i$$

•
$$\sigma_1^2 - \sigma_0^2 = Var(\delta_i|X)$$

•
$$\sigma_{\hat{\delta}} = \sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_0^2}{N_0}}$$

More General Setup

•
$$Y_{iD} = \alpha_i + X_i \beta + (\bar{\delta} + \delta_i) D_i + \epsilon_i$$

•
$$\sigma_1^2 - \sigma_0^2 = Var(\delta_i|X)$$

$$\bullet \ \sigma_{\hat{\delta}} = \sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_0^2}{N_0}}$$

- In theory, want to allocate a given overall N in proportion to outcome variance
 - Analogous results for arm cost differences given an overall budget
- In practice, researchers rarely deviate from equal arm size

Extension #1: Imperfect Compliance

Extension #1: Imperfect Compliance

- 1. Reduced-form (ITT): $MDE_{perfect comp.} = MDE_{partial comp.} \times complier share$
- 2. Not as straightforward for instrumental variables (LATE)
 - See Austin Frakt's blog for a derivation

Extension #2: Group-level Randomization

Extension #2: Group-level Randomization

- 1. Explicitly correct for intra-cluster correlation between observations...
 - Scale $\sigma_{\hat{\delta}}$ by $\sqrt{1 + (n_{groupsize} 1)\rho}$, where ρ is the intra-cluster correlation (i.e. % of overall variance explained by within-group variance)
 - Stata command: loneway or sampclus
- 2. ...or collapse outcomes to the unit of randomization and apply previous results

Extension #3: Controlling for Covariates

• Pros?

• Cons?

Alternatives?

Extension #3: Controlling for Covariates

- Pros?
 - Can soak up residual variance in outcomes
- Cons?
 - Can undo randomization that was the point in the first place
 - Do not want to control for mediating factors
- Alternatives?
 - Stratify randomization on covariates

Extension #4: Between vs. Within-Subjects Designs

Extension #4: Between vs. Within-Subjects Designs

Why does this affect the MDE?

Within-subject can be thought of as stratifying treatment at the subject-level

$$Var(\hat{\delta}) = \frac{\sigma_1^2}{N_W} + \frac{\sigma_0^2}{N_W} - \frac{2\sigma_1\sigma_0\rho}{N_W}$$

where ρ is within-subject correlation in outcomes

Very related to McKenzie (2012) JDE
 "Beyond baseline and follow-up: The case for more T in experiments"

Extension #5: Continuous Treatment

- Suppose I think the effect is linear. Does it matter what values of treatment I randomize?
- What if I think the effect is quadratic?
- See Section 6 of List, Sadoff, and Wagner

Extension #6: Spillovers

- What if the stable unit treatment value assumption (SUTVA) is violated?
 (i.e. your treatment affects my outcome)
 - Classic example is the Miguel and Kremer (2004) de-worming paper

Extension #6: Spillovers

- What if the stable unit treatment value assumption (SUTVA) is violated?
 (i.e. your treatment affects my outcome)
 - Classic example is the Miguel and Kremer (2004) de-worming paper
- Identification: Carefully specify estimand for MDE. Need both individual and "market"-level randomization.
- Inference: Hard. Best to simulate.

Extension #6: Spillovers

- What if the stable unit treatment value assumption (SUTVA) is violated?
 (i.e. your treatment affects my outcome)
 - Classic example is the Miguel and Kremer (2004) de-worming paper
- Identification: Carefully specify estimand for MDE. Need both individual and "market"-level randomization.
- Inference: Hard. Best to simulate.
- See Aronow, Eckles, Samii, and Zonszein (2020) for modern methods

Extensions Takeaways

- The variance term is more complicated in more complicated designs
 - See Duflo, Glennerster, and Kremer (2007) Handbook for more discussion
- But simulations are good to avoid annoying derivations

Outline

Power Calculations

Parametric Power Calculations

Simulation Power Calculations

Potpourri of Power Calculation Issues

Concluding Thoughts

Power Calc Simulation Verbal Intuition

- 1. Use an underlying model to generate (arbitrarily complex!) data
- 2. Run (arbitrarily complex!) estimation on simulated data from (1)
- 3. Given confidence level α , record whether the result from (2) is significant
- 4. Repeat **(1)-(3)** many times
- 5. Power is fraction of rejections

Power Calc Simulation Implementation

- 1. Code it up yourself
- 2. DeclareDesign
 - Available in R with additional Stata packages
 - Its blog nicely emphasizes steps in pre-specifying model, parameters of interest, and empirical strategy to gauge power and bias
 - (I personally haven't found the command that intuitive)

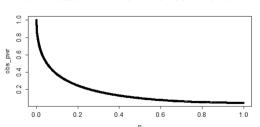
Outline

Power Calculations

Parametric Power Calculations

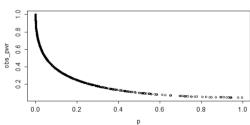
Simulation Power Calculations

Potpourri of Power Calculation Issues


Concluding Thoughts

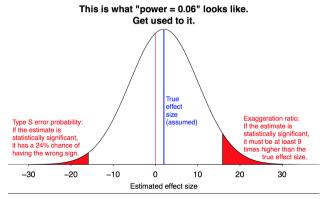
Potpourri #1: Power Calculations are Ex Ante!

 It's tempting to plug the observed effect size and standard deviation into the power formula to see how much an estimate should move your priors


Potpourri #1: Power Calculations are Ex Ante!

- It's tempting to plug the observed effect size and standard deviation into the power formula to see how much an estimate should move your priors
- DO NOT DO THIS! "POST-HOC POWER" IS SIMPLY A MONOTONIC TRANSFORMATION OF THE P-VALUE
- Source: Daniel Lakens' blog (see also Gelman 2018)

Simulated from DGP with 50% Power

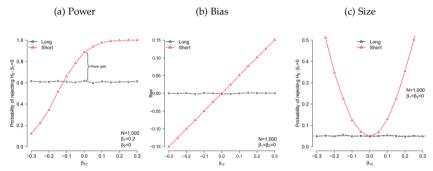


Potpourri #2: Underpowered Experiments

• Why is an underpowered (e.g. low $\beta=0.06$) experiment bad?

Potpourri #2: Underpowered Experiments

- Why is an underpowered (e.g. low $\beta = 0.06$) experiment bad?
- "Type S" error: Conditional on significant result, probability it's wrong-signed
- "Type M" error: Conditional on significant result, expected overstatement



Potpourri #3: Factorial Designs

- Two binary treatments D_1 and D_2
- Interested in effect of treatment 1 relative to control
- Fully saturated "long" specification: $Y_i=eta_1T_{1i}+eta_2T_{2i}+eta_{12}T_{1i}T_{2i}+\epsilon_i$
- Commonly used "short" specification: $Y_i = \beta_1 T_{1i} + \beta_2 T_{2i} + \epsilon_i$
- Why might the "short" specification have different power/size properties?

Potpourri #3: Factorial Designs (cont.)

- Muralidharan, Romero, and Wuthrich (2020) WP derives the properties
- World Bank blog has accessible write-up on these problems
 - Pre-testing and running short regression isn't uncommon!
 (e.g. the Amy's 2018 SNAP paper!)

Note: Simulations are based on sample size N, normal iid errors, and 10,000 repetitions. The size for figures 1c and 1a is $\alpha = 0.05$.

Outline

Power Calculations

Parametric Power Calculations

Simulation Power Calculations

Potpourri of Power Calculation Issues

Concluding Thoughts

Art of the Power Calculation

- 1. Standard deviation of outcome $\hat{\sigma}_y$
 - Pilot study/previous studies
 - Survey data
- 2. MDE δ^{MDE}
 - What would be "interesting" or cost-effective
 - Compare to interventions with similar goals
 - Use information from theory/calibrated models
- 3. Sample size N
 - What would be feasible given implementation partner and budget constraints

Potential Connections to Other Papers

- Power calculations emphasize sampling-based uncertainty
 - How could you incorporate design-based uncertainty a la Abadie et al. (2020) ECMA?
- Power calculations emphasize statistical significance
 - Is it more reasonable to focus only on $\sigma_{\hat{\delta}}$ a la Abadie (2020) AERI?