Recitation 3: Understanding Marginals

Jon Cohen

September 31, 2021

Recitation Takeaways

- 1. Marginal treatment effects as framework for policy extrapolation (applied to MH, AS, and selection on MH)
 - Accessible review article:

Cornellison et al. (2016) Labour Economics

- More advanced treatment on non-continuous instruments: Brinch, Mogstad, Wiswall (2017) JPE; Mogstad and Torgovitsky (2018) ARE
- 2. Alternative ways to characterize marginal compliers
 - Derive gap between marginal and average characteristics using regression equation Gruber, Levine, and Staiger (1999) QJE
 - Derive any functional of IV complier characteristics or potential outcomes Abadie (2003) JoE

Outline

Marginal Treatment Effects

Characteristics of the Marginals

MTE vs. LATE

- Rough intuition: MTE is the continuous version of the LATE
- **Usefulness**: Various treatment effects of interest–ATE, ATT, ATUT, LATE, etc.–can be expressed as averages of MTEs
 - Selection on gains for different IV's deliver internally valid LATE that may not be useful for extrapolating to ATE
- Notation: Outcome Y, (binary endogenous) treatment D, instrument Z
 - E.g. $Y \equiv$ healthcare utilization, $D \equiv$ health insurance coverage, $Z \equiv$ (randomly assigned) insurance premium
- See Cornellison et al. (2016) Labour Economics for more details

Visual IV for LATE (Binary Z)

Visual IV for LATE (Non-binary Z)

See Figure 1 of Angrist (1990) AER on Vietnam draft lottery

Recasting Instrument as Revealing Unobservables

- Translate x-axis to propensity score: $E[D|Z] = P(D = 1|Z) \equiv P(Z) \in [0,1]$
- Z traces out unobserved willingness to select into treatment
- Slope at a given point reveals *marginal* treatment effect at a given quantile of the willingness to select into treatment distribution

Visual IV for MTE (Non-binary Z)

Understanding MTE's Using Potential Outcomes

- Previous graphs showed outcomes of both D = 1 and D = 0 at each Z
- Instead, we can separately show (potential) outcomes for D = 1 and D = 0 by Z
 - **EFC**: Y_1 as utilization w/ insurance, Y_0 as utilization w/o insurance, Z as randomly assigned price
 - See Brinch, Mogstad, Wiswall (2017) JPE for more details

No Selection and No Causal Effects

• "No MH or AS"

• ATE = ATT = ATUT = E[Y|D = 1] - E[Y|D = 0] = 0

Causal Effects but No Selection on Levels or Slopes

"MH but not AS"

• $ATE = ATT = ATUT = LATE = E[Y|D = 1] - E[Y|D = 0] \neq 0$

No Causal Effects but Selection on Levels

$E[D|Z] \equiv P(Z)$

- "AS but not MH"
- $ATE = ATT = ATUT = LATE = 0 \neq E[Y|D = 1] E[Y|D = 0]$

Causal Effect with Selection on Levels and Slopes

- "Selection on MH"
- $ATE \neq ATT, ATUT, LATE$ varies by Z

Aside: Estimating MTE's with Binary Z

- Previous graphs suggest that you can implement MTE's with a binary Z assuming linearity of potential outcomes
 - **Test** with linearity assumption for $LATE \neq ATE$ is testing for unequal slopes by D
- More variation in Z allows you to relax assumptions

Aside: Selection Bias Formula for ATE

• Formula for ATT should be familiar:

$$\underbrace{E[Y_1|D=1] - E[Y_0|D=0]}_{\text{Observed diff. in outcomes}} = \underbrace{E[Y_1 - Y_0|D=1]}_{ATT} + \underbrace{E[Y_0|D=1] - E[Y_0|D=0]}_{\text{Selection bias}}$$

ATE decomposition has additional term of treatment effect heterogeneity:

$$\underbrace{E[Y_1|D=1] - E[Y_0|D=0]}_{\text{Observed diff. in outcomes}} = \underbrace{E[Y_1 - Y_0]}_{ATE} + \underbrace{E[Y_0|D=1] - E[Y_0|D=0]}_{\text{Selection bias}} + \underbrace{(1 - P(D=1))}_{\text{Share untreated}} \underbrace{(E[Y_1 - Y_0|D=1])}_{ATT} - \underbrace{E[Y_1 - Y_0|D=0]}_{ATUT} + \underbrace{E[Y_1 - Y_0|D=0]}_{ATUT} + \underbrace{(1 - P(D=1))}_{ATUT} \underbrace{(E[Y_1 - Y_0|D=1])}_{ATUT} + \underbrace{(E[Y_1 - Y_0|D=0])}_{ATUT} + \underbrace{(E[Y_1 - Y_0|D=0]}_{ATUT} + \underbrace{(E[Y_1 - Y_0|D=0]}_{ATUT} + \underbrace{(E[Y_1 - Y_0|D=0])}_{ATUT} + \underbrace{(E[Y_1 - Y_0|D=0]}_{ATUT} + \underbrace{(E[Y_1 - Y_0|D=0]}_{$$

• See here for full derivation

Taking Stock

- Growing recognition of treatment effect heterogeneity
- MTEs provide a formal framework for:
 - 1. Aggregating heterogeneous treatment effects to policy-relevant parameters
 - 2. Considering how treatment effect heterogeneity interacts with selection into treatment

Outline

Marginal Treatment Effects

Characteristics of the Marginals

(P)review of EFC (2010) Strategy

- Specification: $c_i = \gamma + \delta p_i + u_i$
- Sample: *i* who select into coverage at price p_i (of measure D(p))
- Variation: p_i randomly assigned
- **Intuition**: p_i has no causal effect on c_i so $\delta \neq 0$ is due to sample selection
- Translating to marginal outcome: Use chain rule to express marginal (costs at p) in terms of average (costs at p) and total number (D(p))

Gruber, Levine, and Staiger (1999): Gap Between Marginal and Average

- **Research question**: What is the impact of abortion on average living standards due to selection?
- Specification: $O_{st}/B_{st} = \alpha \ln(B_{st}) + controls$
 - E.g. $O/B \equiv \%$ infants under FPL

$$\alpha = \frac{\partial O/B}{\partial \ln(B)}$$
$$= B \frac{\partial O/B}{\partial B}$$
$$= \underbrace{\frac{\partial O}{\partial B}}_{\text{marginal}} - \underbrace{\frac{O}{B}}_{\text{average}}$$

- Variation: Instrument for state births B_{st} using abortion law repeal
- Intuition: Same as EFC

Abadie (2003): Extending LATE Theorem Logic

- Binary instrument Z, binary treatment D, outcome Y
- Potential outcomes Y_{zd} and D_z for $d \in \{0, 1\}$, $z \in \{0, 1\}$
- Standard IV assumptions:
 - Independence: $(Y_{00}, Y_{01}, Y_{10}, Y_{11} \perp Z)$
 - Exclusion: $P(Y_{1d} = Y_{0d}) = 1$ for $d \in \{0, 1\}$
 - 1st stage: 0 < P(Z = 1) < 1 and $P(D_1) > P(D_0)$
 - Monotonicity: $P(D_1 \ge D_0) = 1$

Abadie's κ in words

- Split population into compliers (C), always-takers (AT), and never-takers (NT)
- Use law of total probability to decompose any observable into those for C, AT, NT
- Observables for AT revealed by (D, Z) = (1, 0) and NT by (D, Z) = (0, 1)
- "Subtract off" AT and NT by reweighting based on realized (D, Z)
 - Applicable for any function $g(\cdot)$ (e.g. quantile) applied to any observable (i.e. outcome Y, treatment D, or covariate X)
 - Applicable for complier Y(1) [Y(0)] by subtracting off AT [NT] from treated [untreated] outcomes

Abadie's κ in math

Complier observables

• Define
$$\kappa = 1 - \underbrace{\frac{D(1-Z)}{P(Z=0)}}_{\text{Subtract off }AT} - \underbrace{\frac{(1-D)Z}{P(Z=1)}}_{\text{Subtract off }NT}$$

• $\underbrace{E[g(Y, D, X)|D_1 > D_0]}_{\text{complier observables}} = \underbrace{\frac{1}{P(D_1 > D_0)}}_{\text{scale by size of }C} \underbrace{E[\kappa g(Y, D, X)]}_{\text{weight each observation}}$

Complier Treated Potential Outcomes

• Define
$$\kappa_{(1)} = 1 - \underbrace{D}_{NT \text{ get 0 weight}} - \underbrace{\frac{(Z - P(Z = 1))}{P(Z = 0)P(Z = 1)}}_{AT \text{ get weight < } 0NT}$$

• $E[g(Y_1, X)|D_1 > D_0] = \frac{1}{P(D_1 > D_0)}E[\kappa_{(1)}g(Y, D, X)]$

Analogous for Complier Untreated Potential Outcomes

Comparing Approaches

- EFC: Clear mapping to visual plots of potential outcomes
- Gruber et al.: Derivation from regression specification
- Abadie: Derivation from LATE theorem logic
 - Powerful to be able to estimate any function of potential outcomes (and therefore treatment effects on those functions)