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Recitation Takeaways

1. Marginal treatment effects as framework for policy extrapolation
(applied to MH, AS, and selection on MH)

Accessible review article:
Cornellison et al. (2016) Labour Economics
More advanced treatment on non-continuous instruments:
Brinch, Mogstad, Wiswall (2017) JPE; Mogstad and Torgovitsky (2018) ARE

2. Alternative ways to characterize marginal compliers
Derive gap between marginal and average characteristics using regression equation
Gruber, Levine, and Staiger (1999) QJE
Derive any functional of IV complier characteristics or potential outcomes
Abadie (2003) JoE

https://www.sciencedirect.com/science/article/abs/pii/S0927537116300562
https://www.journals.uchicago.edu/doi/abs/10.1086/692712
https://www.annualreviews.org/doi/abs/10.1146/annurev-economics-101617-041813
https://academic.oup.com/qje/article-abstract/114/1/263/1921729?redirectedFrom=fulltext
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.4386&rep=rep1&type=pdf
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Outline

Marginal Treatment Effects

Characteristics of the Marginals
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MTE vs. LATE

• Rough intuition: MTE is the continuous version of the LATE
• Usefulness: Various treatment effects of interest–ATE, ATT, ATUT, LATE, etc.–can be

expressed as averages of MTEs
Selection on gains for different IV’s deliver internally valid LATE that may not be useful for
extrapolating to ATE

• Notation: Outcome Y , (binary endogenous) treatment D, instrument Z

E.g. Y ≡ healthcare utilization, D ≡ health insurance coverage, Z ≡ (randomly assigned)
insurance premium

• See Cornellison et al. (2016) Labour Economics for more details

https://www.sciencedirect.com/science/article/abs/pii/S0927537116300562
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Visual IV for LATE (Binary Z)
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Visual IV for LATE (Non-binary Z)

See Figure 1 of Angrist (1990) AER on Vietnam draft lottery

https://sites.duke.edu/niou/files/2011/06/Angrist_lifetime-earningsmall.pdf
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Recasting Instrument as Revealing Unobservables

• Translate x-axis to propensity score: E[D|Z] = P (D = 1|Z) ≡ P (Z) ∈ [0, 1]

• Z traces out unobserved willingness to select into treatment

• Slope at a given point reveals marginal treatment effect at a given quantile of the
willingness to select into treatment distribution
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Visual IV for MTE (Non-binary Z )
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Understanding MTE’s Using Potential Outcomes

• Previous graphs showed outcomes of both D = 1 and D = 0 at each Z

• Instead, we can separately show (potential) outcomes for D = 1 and D = 0 by Z

EFC: Y1 as utilization w/ insurance, Y0 as utilization w/o insurance, Z as randomly assigned
price
See Brinch, Mogstad, Wiswall (2017) JPE for more details

https://www.journals.uchicago.edu/doi/abs/10.1086/692712
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No Selection and No Causal Effects

• “No MH or AS"
• ATE = ATT = ATUT = E[Y |D = 1] − E[Y |D = 0] = 0
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Causal Effects but No Selection on Levels or Slopes

• “MH but not AS"
• ATE = ATT = ATUT = LATE = E[Y |D = 1] − E[Y |D = 0] ̸= 0
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No Causal Effects but Selection on Levels

• “AS but not MH"
• ATE = ATT = ATUT = LATE = 0 ̸= E[Y |D = 1] − E[Y |D = 0]
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Causal Effect with Selection on Levels and Slopes

• “Selection on MH"
• ATE ̸= ATT, ATUT , LATE varies by Z

• Can see slope of Y (Z) is Y1(Z) − Y0(Z)
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Aside: Estimating MTE’s with Binary Z

• Previous graphs suggest that you can implement MTE’s with a binary Z assuming
linearity of potential outcomes

Test with linearity assumption for LATE ̸= ATE is testing for unequal slopes by D

• More variation in Z allows you to relax assumptions
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Aside: Selection Bias Formula for ATE

• Formula for ATT should be familiar:
E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸

Observed diff. in outcomes

= E[Y1 − Y0|D = 1]︸ ︷︷ ︸
AT T

+ E[Y0|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
Selection bias

• ATE decomposition has additional term of treatment effect heterogeneity:

E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
Observed diff. in outcomes

= E[Y1 − Y0]︸ ︷︷ ︸
AT E

+

E[Y0|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
Selection bias

+

(
1 − P (D = 1)

)︸ ︷︷ ︸
Share untreated

(E[Y1 − Y0|D = 1]︸ ︷︷ ︸
AT T

− E[Y1 − Y0|D = 0]︸ ︷︷ ︸
AT UT

)

• See here for full derivation

https://www.overleaf.com/project/5f35692899e4100001627933
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Taking Stock

• Growing recognition of treatment effect heterogeneity
• MTEs provide a formal framework for:

1. Aggregating heterogeneous treatment effects to policy-relevant parameters
2. Considering how treatment effect heterogeneity interacts with selection into treatment
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Outline

Marginal Treatment Effects

Characteristics of the Marginals
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(P)review of EFC (2010) Strategy

• Specification: ci = γ + δpi + ui

• Sample: i who select into coverage at price pi (of measure D(p))

• Variation: pi randomly assigned

• Intuition: pi has no causal effect on ci so δ ̸= 0 is due to sample selection

• Translating to marginal outcome: Use chain rule to express marginal (costs at p) in
terms of average (costs at p) and total number (D(p))
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Gruber, Levine, and Staiger (1999): Gap Between Marginal and Average

• Research question: What is the impact of abortion on average living standards due to
selection?

• Specification: Ost/Bst = α ln(Bst) + controls

E.g. O/B ≡ % infants under FPL

α = ∂O/B

∂ ln(B)

= B
∂O/B

∂B

= ∂O

∂B︸︷︷︸
marginal

− O

B︸︷︷︸
average

• Variation: Instrument for state births Bst using abortion law repeal
• Intuition: Same as EFC
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Abadie (2003): Extending LATE Theorem Logic

• Binary instrument Z , binary treatment D, outcome Y

• Potential outcomes Yzd and Dz for d ∈ {0, 1}, z ∈ {0, 1}
• Standard IV assumptions:

Independence: (Y00, Y01, Y10, Y11 ⊥ Z)
Exclusion: P (Y1d = Y0d) = 1 for d ∈ {0, 1}
1st stage: 0 < P (Z = 1) < 1 and P (D1) > P (D0)
Monotonicity: P (D1 ≥ D0) = 1
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Abadie’s κ in words

• Split population into compliers (C), always-takers (AT ), and never-takers (NT )

• Use law of total probability to decompose any observable into those for C, AT, NT

• Observables for AT revealed by (D, Z) = (1, 0) and NT by (D, Z) = (0, 1)
• “Subtract off" AT and NT by reweighting based on realized (D, Z)

Applicable for any function1 g(·) (e.g. quantile) applied to any observable (i.e. outcome Y ,
treatment D, or covariate X)
Applicable for complier Y (1) [Y (0)] by subtracting off AT [NT ] from treated [untreated]
outcomes
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Abadie’s κ in math

Complier observables

• Define κ = 1 − D(1 − Z)
P (Z = 0)︸ ︷︷ ︸

Subtract off AT

− (1 − D)Z
P (Z = 1)︸ ︷︷ ︸

Subtract off NT

• E[g(Y, D, X)|D1 > D0]︸ ︷︷ ︸
complier observables

= 1
P (D1 > D0)︸ ︷︷ ︸
scale by size of C

E[κg(Y, D, X)]︸ ︷︷ ︸
weight each observation

Complier Treated Potential Outcomes

• Define κ(1) = 1 − D︸︷︷︸
NT get 0 weight

− (Z − P (Z = 1)
P (Z = 0)P (Z = 1)︸ ︷︷ ︸

AT get weight < 0NT

• E[g(Y1, X)|D1 > D0] = 1
P (D1>D0)E[κ(1)g(Y, D, X)]

Analogous for Complier Untreated Potential Outcomes
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Comparing Approaches

• EFC: Clear mapping to visual plots of potential outcomes

• Gruber et al.: Derivation from regression specification
• Abadie: Derivation from LATE theorem logic

Powerful to be able to estimate any function of potential outcomes (and therefore
treatment effects on those functions)
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