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Recitation Takeaways

1. Marginal treatment effects as framework for policy extrapolation
(applied to MH, AS, and selection on MH)
m Accessible review article:
Cornellison et al. (2016) Labour Economics
m More advanced treatment on non-continuous instruments:
Brinch, Mogstad, Wiswall (2017) JPE; Mogstad and Torgovitsky (2018) ARE
2. Alternative ways to characterize marginal compliers
m Derive gap between marginal and average characteristics using regression equation
Gruber, Levine, and Staiger (1999) QJE

m Derive any functional of IV complier characteristics or potential outcomes
Abadie (2003) JoE


https://www.sciencedirect.com/science/article/abs/pii/S0927537116300562
https://www.journals.uchicago.edu/doi/abs/10.1086/692712
https://www.annualreviews.org/doi/abs/10.1146/annurev-economics-101617-041813
https://academic.oup.com/qje/article-abstract/114/1/263/1921729?redirectedFrom=fulltext
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.4386&rep=rep1&type=pdf

Outline

Marginal Treatment Effects



MTE vs. LATE

Rough intuition: MTE is the continuous version of the LATE

Usefulness: Various treatment effects of interest—ATE, ATT, ATUT, LATE, etc.—can be
expressed as averages of MTEs

m Selection on gains for different IV's deliver internally valid LATE that may not be useful for
extrapolating to ATE

Notation: Outcome Y, (binary endogenous) treatment D, instrument Z

m E.g. Y = healthcare utilization, D = health insurance coverage, Z = (randomly assigned)
insurance premium

See Cornellison et al. (2016) Labour Economics for more details


https://www.sciencedirect.com/science/article/abs/pii/S0927537116300562

Visual IV for LATE (Binary Z)
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Visual IV for LATE (Non-binary Z)
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See Figure 1 of Angrist (1990) AER on Vietnam draft lottery


https://sites.duke.edu/niou/files/2011/06/Angrist_lifetime-earningsmall.pdf

Recasting Instrument as Revealing Unobservables

* Translate x-axis to propensity score: E[D|Z] = P(D = 1|Z) = P(Z) € [0, 1]
e Z traces out unobserved willingness to select into treatment

» Slope at a given point reveals marginal treatment effect at a given quantile of the
willingness to select into treatment distribution



Visual IV for MTE (Non-binary 7 )

E[Y|Z] Slopes are
21 7, local IV

estimates

(MTE)




Understanding MTE's Using Potential Outcomes

* Previous graphs showed outcomes of both D =1and D = 0 ateach Z
* Instead, we can separately show (potential) outcomes for D =1and D =0 by Z

m EFC: Y] as utilization w/ insurance, Y; as utilization w/o insurance, Z as randomly assigned
price
m See Brinch, Mogstad, Wiswall (2017) JPE for more details


https://www.journals.uchicago.edu/doi/abs/10.1086/692712

No Selection and No Causal Effects

E[Y|Z]

E[D|Z] = P(Z)

e “No MH or AS"
© ATE = ATT = ATUT = E[Y|D = 1] — E[Y|D =0] = 0



Causal Effects but No Selection on Levels or Slopes

ElY|Z]

E[D|Z] = P(Z)

e “MH but not AS"
© ATE = ATT = ATUT = LATE = E[Y|D = 1] — E[Y|D = 0] #0



No Causal Effects but Selection on Levels
E[Y|Z]
Yo

E[D|Z] = P(Z)

e “AS but not MH"
o ATE = ATT = ATUT = LATE =0 # E[Y|D = 1] — E[Y|D = (]



Causal Effect with Selection on Levels and Slopes

ElY|Z]

E[D|Z] = P(2)

e “Selection on MH"
o ATE # ATT,ATUT, LATE varies by Z



Aside: Estimating MTE's with Binary Z

» Previous graphs suggest that you can implement MTE's with a binary Z assuming
linearity of potential outcomes

m Test with linearity assumption for LATE # ATE is testing for unequal slopes by D

* More variation in Z allows you to relax assumptions



Aside: Selection Bias Formula for ATE

e Formula for ATT should be familiar:
E1|D =1] — E[Yy|D = 0] = E[Y1 — Yo|D = 1]+ E[Yy|D = 1] — E[Yy|D = 0]

Observed diff. in outcomes ATT Selection bias
* ATE decomposition has additional term of treatment effect heterogeneity:

E[Y1|D = 1] — E[Yy|D = 0] = E[Y; — Yo] +
Observed diff. in outcomes ATE
E[Yy|D = 1] - E[Yo|D = 0] +
Selection bias
(1—P(D = 1))(E[Y: — Yo|D = 1] - E[Y; — Yol D = 0])
Share untreated ATT ATUT

e See here for full derivation


https://www.overleaf.com/project/5f35692899e4100001627933

Taking Stock

» Growing recognition of treatment effect heterogeneity
* MTEs provide a formal framework for:

1. Aggregating heterogeneous treatment effects to policy-relevant parameters
2. Considering how treatment effect heterogeneity interacts with selection into treatment



Outline

Characteristics of the Marginals



(P)review of EFC (2010) Strategy

Specification: ¢; = v + dp; + u;

Sample: ; who select into coverage at price p; (of measure D(p))

Variation: p; randomly assigned

Intuition: p; has no causal effect on ¢; so § # 0 is due to sample selection

Translating to marginal outcome: Use chain rule to express marginal (costs at p) in
terms of average (costs at p) and total number (D(p))



Gruber, Levine, and Staiger (1999): Gap Between Marginal and Average

» Research question: What is the impact of abortion on average living standards due to
selection?
 Specification: O,; /B, = aln(Bs;) + controls
m E.g. O/B = % infants under FPL

_ 00/B
= om(B)
20/B

0B

900 _ 9
0B B
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marginal ~ average

 Variation: Instrument for state births B using abortion law repeal
¢ Intuition: Same as EFC



Abadie (2003): Extending LATE Theorem Logic

e Binary instrument Z, binary treatment D, outcome Y

* Potential outcomes Y., and D, ford € {0,1}, z € {0,1}
e Standard IV assumptions:

m Independence: (Yoo, Yo1, Y10, Y11 L Z)

m Exclusion: P(Y14 = Yoq) = 1 ford € {0,1}

m Ttstage: 0 < P(Z =1) < 1and P(D;) > P(Dy)

m Monotonicity: P(Dy > Dy) =1



Abadie’s x in words

Split population into compliers (C), always-takers (AT, and never-takers (NT')

Use law of total probability to decompose any observable into those for C, AT, NT

Observables for AT revealed by (D, Z) = (1,0) and NT by (D, Z) = (0,1)
“Subtract off" AT and NT by reweighting based on realized (D, Z)
m Applicable for any function' g(-) (e.g. quantile) applied to any observable (i.e. outcome Y,
treatment D, or covariate X)
m Applicable for complier Y (1) [Y'(0)] by subtracting off AT [NT] from treated [untreated]
outcomes



Abadie’s k in math

Complier observables
Dl-z) (1-D)Z
P(Z=0) P(Z=1)
Subtract off AT Subtract off NT
1
Elg(Y,D,X)|Dy > Dy = —————— Elrg(Y,D, X
[9(Y, D, X)|D1 > Do) = 55— Bleg(Y, D, X)

complier observables ~———~—"weight each observation
scale by size of C

Complier Treated Potential Outcomes
(Z—-P(Z=1)

Definek =1 —

befine vy =1= D~ 5z =gpz=1)
NT get 0 weight
AT get weight<ONT
E[Q(YLX”DI > DO] = mE[H(l)g(Y7 D,X)]

Analogous for Complier Untreated Potential Outcomes



Comparing Approaches

» EFC: Clear mapping to visual plots of potential outcomes

 Gruber et al.: Derivation from regression specification
» Abadie: Derivation from LATE theorem logic

m Powerful to be able to estimate any function of potential outcomes (and therefore
treatment effects on those functions)
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